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ABSTRACT 

If G is a finite group then d(G) denotes the minimal number of generators 
of G. If H and K are groups then the extension, 1--~H--~G--~K-+I, is called 
art outer extension of K by H if d(G) = d(H)+ d(K). Let ~p be the class of 
groups containing all finitep-groups G which has a presentation with d(G) 
= dim H 1 (G,zp) generators and r(G)= dim H 2 (G,Zp) relations: in this article 
itis shown tha t i fK is anon cyclic group belonging to ~p and H is a finite 
abelian p-group then any outer extension of K by H belongs to (~v. 

1. Introduction.  Let  G be a group,  then d(G) denotes  the  min ima l  number  o f  

genera tors  o f  G. Define a class o f  finite p-groups ,  f~p, as fo l lows;  G belongs to ffv 

i f  G is a finite p -g roup  and  G has  a presenta t ion  

G = F / R  = { x l , . . , x ,  IR, ,  "',gm), 

where F is free on genera tors  x t , . . . ,  x ,  wi th  n = d(G) and R is the n o r m a l  c losure  

in F o f  R1, . . . ,R  m with m = d (R / [F ,R]R ' ) .  

G is an extension of  K by H if  H is a n o r m a l  subgroup  o f  G and G/H is i somor-  

phic  to K.  G is an outer  extension o f  K by H if  G is an extension o f  K by H and 

d(G) = d(H) + d(K). 

In  this  pape r  i t  is shown tha t  i f  K is a non cyclic g roup  be longing  to ~¢p and  H 

is a finite abel ian  p -g roup  then any outer  extension o f  K by H belongs to ~p. 

2 Basic theorems 

THEOREM 2.1. Let G be a finite p-group with presentation G = F / R  with 

d(F) = d(G) and suppose d ( R / [ F , R ] R  ~) = rn. 

I f  we take  any set o f  m elements  Rx, ' " ,Rm,  o f  R, l inear ly  independen t  in R 

m o d u l o  [F ,R]R p and  let  K = F/S ,  where S is the n o r m a l  c losure  o f  R1, . . . ,R  m 
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in F, then G is the maximal p-factor group of K, in the sense that if A is a finite 

p-group which is a factor group of K then A is a factor group of G. 

PROOF. Any finite p-factor of K with class k and exponent q = p~ is a factor of 

(F IS)/{rk(F)FqS/S} ~- F/{Fk(F)F~S} 

where Fk(F ) is the kth term of the lower central series of F. Therefore it will 

suffice to show that 

a ~_ Fk(F)FqS. 

Let U = IF, R] and T t h e  normal closure of {r~ I r ~ R }  = R q, then G = F / S T U  

since S T U = R. 

We have U ~ [R,F] = [STU,  F] ~ [U ,F]S T  ~ [ U , F , F ] S T  etc. 

whence 

however 

U ~_ Fk(F)ST for all k, 

T ~_ Fq yielding 

U S T  = R ~_ F~(F)FqS. // 

COROLLARY 2.2. Let N = {xt, " ' ,  xn ] Ri,, "", Ri,} where Rh, ... , Ri, is a subset of 

R1, . . . ,R m. I f  N is a finite p-group then G belongs to f~p. 

PROOF. K = {xl , . . .  , x n [ R1,...,  Rm} is a finite p-group and hence by the theorem 

n = a .  /I 

LEMMA 23.. Let G = { x l , ' " , x ~ [ R 1 , ' " , R m }  = F I R  and 

GIN = {x,, [ R.  "",Rm, $1, "",St} = F /S 

then if  Ri~,...,Ri. are linearly independent in S modulo IF, SIS  p they are 

linearly independent in R modulo [F,R]R p. 

PROOF. The natural mapping R/[F, R]R p into S/[F, S]S p is a homomorphism 

and hence a linear transformation of the respective vector spaces. / /  

The following theorem is well known and is stated without proof. (see for 

example [1]). 

THEOREM 2.4. Let H and K belong to f~p, then the direct product of H and K 

belongs to ffp with minimal presentation. 
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H x K = {x~,...,x,, y~,'",ym]R~,'",R., S~,"" So, x,yjxT~y; ~} 

where 

H = { x , , ' " , x .  IR1, '",R.}  

g = 

are minimal  presentations for  H and K respectively. 

3. The main theorem 

and 

//  
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Let G be a split extension of K by H where H is an abelian p-group and K 

is a non cyclic group belonging to fgp. Then G has a presentation 

G = { a l , . . . , a , , x l , . . . , x s l A ,  g ,  x 1 , . . . , X s }  where 

H =  {al,...,a. lA } and 

K = { x l , ' " , x s l e }  are presentations for  H and K 

respectively and Xi, i = 1 , . . . , s  is the set of conjugacy relations of x, on a i, 

j = 1, . . . ,n .  

We may denote the n relations X~ as an n x n matrix as follows. 

I f  xlajx7 t = a~'.., a,~" then the j th column of X i is the vector (al,  ..., c~,). Also 

if the exponent of  H is P '  we may replace X, with 

X~ = X i + PrK 

where K is any n x n integer matrix. Conversely if X I , " ' ,  Xs is any set of  n × n 

matrices with integer entries then there exists a maximal abelian group H 

such that in the split extension of K by H the Xi give the conjugacy relations. 

I f  in this case H is necessarily a finite p-group we say that  X, is a p-representation 

of  K.  

LEMMA 3.1. Let X and Y be n x n matrices with integer entries and a, fl, 7 

powers of a prime number p. Then there exists matrices K1 and K2 with integer 

entries such that 

(i) u = I(X + aK1) p - I.  I ~ 0, 

(ii) v = I ( Y +  aK2) ~ - I .  I ~ 0 and 

(iii) the only prime dividing both u and v is p. 

PROOF. To prove (i) we consider the polynomial in z of  degree nfi 

I(x + ~In) P-- I. I. 
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Let w be any integer not a root of  the given polynomial and let K1 = wI,.  Next 

let ql, "" ", qt be the primes different from p which divide u, then we need only show 

we can choose a K2 such that v ~ 0 modulo qi for i = 1,... ,  t whence (ii) and (iii) 

follow. 

We use induction on t. 

Suppose [ (Y+ ~K) ~ - I ,  [ = 0 modulo ql for all K then since ~ is a unit modulo 

ql we have. 

[ Z r - I ,  [ = 0 modulo q~ for all Z. In particular in the case of  Z being of  the 

form sI, we have 

co r - 1 modulo q~ for all integers co which certainly gives a contradiction. 

Assume [ (Y+ ~K) ~ - I ,  I ~ 0 modulo qi, i = 1, . . . , j  - 1. 

Then as before suppose 

I(Y+c~K + ~ q l q z ' " q j - l H )  V 1 , 1 - 0  

modulo qj for a l l  H, then we get a contradiction. / /  

LEMMA 3.2. Let G be a split extension of a non cyclic group, K, belonging 

to ~p by an abelian p-group, H, then we may choose the conjugacy relations X~ 

such that they are a p-representation of K. 

PROOF. Let x and y be any two of the generators of K occuring in a minimal 

presentation of  K, and let X and Ybe the corresponding matrices of conjugation. 

Further let H be of exponent P '  and P~, P~ the orders of x and y respectively. 

Replace X and Y with 

XI = X + P'K~ and 

Y1 = Y + PrK2 such that 

v = [ Y~a - I ,  { ¢ 0 and the only prime dividing both u and v is p. 
p#. 

Then the set of relations given by X1 = I~" and Y1 = I ,  imply that H must be a 

finite p-group. / / 

THEOREM 3.3. Let K be any non cyclic group belonging to Np and H a finite 

abelian p-group. Then any outer extension, G, of K by H belongs to f~p. 

PROOF. Let K and H have presentations 

K = {xl , . . . ,x~]S} and 
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H = (a I, ..., an ]A} respectively, then G has a presentation 

G = ( a l , " ' ,  an Ix1 , ' " ,  xs ]A, S, X} where X is the set oi" conjugacy relations 

each of  the form 

= a l " " a n ,  with ~k depending on i and j. 

Since the extension is outer then ~k = 0 modulo p for k # j ,  otherwise ak could be 

deleted from the generating set, whence modulo H p = {b p I b ~ H} the conjugacy 

relations reduce to relations of the form 

xiajxT, 1 = a~ J whence c~j = 1 modulo p. 

With N = H p in Lemma 2.3 the conjugacy relations which reduce to commuting 

relations in G / N  together with the commuting relations of  H and the defining 

relations of  K are linearly independent modulo IF, R]R  p where G = F / R .  

However by Lemma 3.2 we may choose these relations such that they define a 

finite p-group and hence by Corollary 2.2 belongs to f#p. / /  

The case with K cyclic appears more difficult since the different types need 

different proofs. However the theorem still appears to hold. For  example for p 

odd let 

G = {a,b ,  c l a b  = ba, a p~ = b p~ = c p =  1, cac -1 = a ~+p, cbc -1 = bl+p}. 

Then it can be shown for example by the methods in [2] that dim H2(G, Zp) = 4. 

Hence if G belongs to f¢p, G should have 4 defining relations and in fact it has. 

We have 

G = ( a , b ,  c l c P =  # = b  1 =bl+kP ~} a , c a c  - 1  ---- a I + p ,  c b c  - 1  +~, a - l b a  

where k is chosen such that the greatest common divisor of  ( i  + p )P -1  and 

(1 + kp2) p~ -  1 is p2 which can be done as in Lemma 3.1. 
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