MINIMAL PRESENTATIONS FOR CERTAIN GROUP EXTENSIONS

BY

J.W. WAMSLEY

ABSTRACT

If G is a finite group then d(G) denotes the minimal number of generators of G. If H and K are groups then the extension, $1 \rightarrow H \rightarrow G \rightarrow K \rightarrow 1$, is called an outer extension of K by H if d(G) = d(H) + d(K). Let \mathscr{G}_p be the class of groups containing all finite p-groups G which has a presentation with d(G) $= \dim H^1(G, z_p)$ generators and $r(G) = \dim H^2(G, Z_p)$ relations: in this article it is shown that if K is a non cyclic group belonging to \mathscr{G}_p and H is a finite abelian p-group then any outer extension of K by H belongs to \mathscr{G}_p .

1. Introduction. Let G be a group, then d(G) denotes the minimal number of generators of G. Define a class of finite p-groups, \mathscr{G}_p , as follows; G belongs to \mathscr{G}_p if G is a finite p-group and G has a presentation

$$G = F/R = \{x_1, \cdots, x_n \mid R_1, \cdots, R_m\},\$$

where F is free on generators x_1, \dots, x_n with n = d(G) and R is the normal closure in F of R_1, \dots, R_m with $m = d(R/[F, R]R^p)$.

G is an extension of K by H if H is a normal subgroup of G and G/H is isomorphic to K. G is an outer extension of K by H if G is an extension of K by H and d(G) = d(H) + d(K).

In this paper it is shown that if K is a non cyclic group belonging to \mathscr{G}_p and H is a finite abelian p-group then any outer extension of K by H belongs to \mathscr{G}_p .

2 Basic theorems

THEOREM 2.1. Let G be a finite p-group with presentation G = F/R with d(F) = d(G) and suppose $d(R/[F, R]R^{I}) = m$.

If we take any set of *m* elements R_1, \dots, R_m , of *R*, linearly independent in *R* modulo $[F, R]R^p$ and let K = F/S, where *S* is the normal closure of R_1, \dots, R_m

Received September 15, 1970 and in revised form November 15, 1970

in F, then G is the maximal p-factor group of K, in the sense that if A is a finite p-group which is a factor group of K then A is a factor group of G.

PROOF. Any finite *p*-factor of K with class k and exponent $q = p^{\alpha}$ is a factor of

$$(F/S)/\{\Gamma_k(F)F^qS/S\} \cong F/\{\Gamma_k(F)F^qS\}$$

where $\Gamma_k(F)$ is the kth term of the lower central series of F. Therefore it will suffice to show that

$$R \subseteq \Gamma_k(F)F^q S.$$

Let U = [F, R] and T the normal closure of $\{r^{q} | r \in R\} = R^{q}$, then G = F/STU since STU = R.

We have $U \subseteq [R, F] = [STU, F] \subseteq [U, F]ST \subseteq [U, F, F]ST$ etc. whence

$$U \subseteq \Gamma_k(F)ST$$
 for all k ,

however

$$T \subseteq F_q \text{ yielding}$$
$$UST = R \subseteq \Gamma_k(F)F^qS. \qquad //$$

COROLLARY 2.2. Let $N = \{x_1, \dots, x_n | R_{i_1}, \dots, R_{i_t}\}$ where R_{i_1}, \dots, R_{i_t} is a subset of R_1, \dots, R_m . If N is a finite p-group then G belongs to \mathscr{G}_p .

PROOF. $K = \{x_1, \dots, x_n \mid R_1, \dots, R_m\}$ is a finite *p*-group and hence by the theorem K = G. //

LEMMA 23.. Let $G = \{x_1, \dots, x_n | R_1, \dots, R_m\} = F/R$ and $G/N = \{x_1, \dots, x_n | R_1, \dots, R_m, S_1, \dots, S_t\} = F/S$

then if R_{i_1}, \dots, R_{i_n} are linearly independent in S modulo $[F, S]S^p$ they are linearly independent in R modulo $[F, R]R^p$.

PROOF. The natural mapping $R/[F, R]R^p$ into $S/[F, S]S^p$ is a homomorphism and hence a linear transformation of the respective vector spaces. //

The following theorem is well known and is stated without proof. (see for example [1]).

THEOREM 2.4. Let H and K belong to \mathscr{G}_p , then the direct product of H and K belongs to \mathscr{G}_p with minimal presentation.

Vol. 9, 1971

$$H \times K = \{x_1, \dots, x_n, y_1, \dots, y_m | R_1, \dots, R_u, S_1, \dots, S_v, x_i y_j x_i^{-1} y_j^{-1}\}$$

where

$$H = \{x_1, \dots, x_n \mid R_1, \dots, R_u\} \quad and$$
$$K = \{y_1, \dots, y_m \mid S_1, \dots, S_v\}$$

are minimal presentations for H and K respectively. //

3. The main theorem

Let G be a split extension of K by H where H is an abelian p-group and K is a non cyclic group belonging to \mathscr{G}_p . Then G has a presentation

 $G = \{a_1, \dots, a_n, x_1, \dots, x_s \mid A, R, X_1, \dots, X_s\} where$ $H = \{a_1, \dots, a_n \mid A\} and$ $K = \{x_1, \dots, x_s \mid R\} are presentations for H and K$

respectively and X_i , $i = 1, \dots, s$ is the set of conjugacy relations of x_i on a_j , $j = 1, \dots, n$.

We may denote the *n* relations X_i as an $n \times n$ matrix as follows.

If $x_i a_j x_i^{-1} = a_1^{\alpha_1} \cdots a_n^{\alpha_n}$ then the *j*th column of X_i is the vector $(\alpha_1, \dots, \alpha_n)$. Also if the exponent of H is P^r we may replace X_i with

$$X'_i = X_i + P'K$$

where K is any $n \times n$ integer matrix. Conversely if X_1, \dots, X_s is any set of $n \times n$ matrices with integer entries then there exists a maximal abelian group H such that in the split extension of K by H the X_i give the conjugacy relations. If in this case H is necessarily a finite p-group we say that X_i is a p-representation of K.

LEMMA 3.1. Let X and Y be $n \times n$ matrices with integer entries and α, β, γ powers of a prime number p. Then there exists matrices K_1 and K_2 with integer entries such that

- (i) $u = |(X + \alpha K_1)^{\beta} I_n| \neq 0$,
- (ii) $v = |(Y + \alpha K_2)^{\gamma} I_n| \neq 0$ and

(iii) the only prime dividing both u and v is p.

PROOF. To prove (i) we consider the polynomial in z of degree $n\beta$

$$|(X + \alpha z I_n)^{\beta} - I_n|.$$

Let w be any integer not a root of the given polynomial and let $K_1 = w I_n$. Next let q_1, \dots, q_t be the primes different from p which divide u, then we need only show we can choose a K_2 such that $v \neq 0$ modulo q_i for $i = 1, \dots, t$ whence (ii) and (iii) follow.

We use induction on t.

Suppose $|(Y + \alpha K)^{\gamma} - I_n| \equiv 0$ modulo q_1 for all K then since α is a unit modulo q_1 we have.

 $|Z^{\gamma} - I_n| \equiv 0$ modulo q_1 for all Z. In particular in the case of Z being of the form sI_n we have

 $\omega^{\gamma} \equiv 1 \mod q_1$ for all integers ω which certainly gives a contradiction.

Assume $|(Y + \alpha K)^{\gamma} - I_n| \neq 0$ modulo q_i , $i = 1, \dots, j - 1$.

Then as before suppose

$$\left| (Y + \alpha K + \alpha q_1 q_2 \cdots q_{j-1} H)^{\gamma} - I_n \right| \equiv 0$$

modulo q_i for all H, then we get a contradiction. //

LEMMA 3.2. Let G be a split extension of a non cyclic group, K, belonging to \mathscr{G}_p by an abelian p-group, H, then we may choose the conjugacy relations X_i such that they are a p-representation of K.

PROOF. Let x and y be any two of the generators of K occuring in a minimal presentation of K, and let X and Y be the corresponding matrices of conjugation. Further let H be of exponent P^r and P^{α} , P^{β} the orders of x and y respectively.

Replace X and Y with

```
X_1 = X + P^r K_1 and

Y_1 = Y + P^r K_2 such that
```

 $u=\left|X_{1}^{p^{\alpha}}-I_{n}\right|\neq0,$

 $v = |Y_1^{p^{\beta}} - I_n| \neq 0$ and the only prime dividing both u and v is p. Then the set of relations given by $X_1 = I_n^{p^{\alpha}}$ and $Y_1 = I_n^{p^{\beta}}$ imply that H must be a finite p-group. //

THEOREM 3.3. Let K be any non cyclic group belonging to \mathscr{G}_p and H a finite abelian p-group. Then any outer extension, G, of K by H belongs to \mathscr{G}_p .

PROOF. Let K and H have presentations $K = \{x_1, \dots, x_s \mid S\}$ and

462

CERTAIN GROUP EXTENSIONS

 $H = \{a_1, \dots, a_n \mid A\}$ respectively, then G has a presentation

 $G = \{a_1, \dots, a_n | x_1, \dots, x_s | A, S, X\}$ where X is the set of conjugacy relations each of the form

$$x_i a_j x_i^{-1} = a_1^{\alpha_n} \cdots a_n$$
, with α_k depending on *i* and *j*.

Since the extension is outer then $\alpha_k \equiv 0 \mod p$ for $k \neq j$, otherwise a_k could be deleted from the generating set, whence modulo $H^p = \{b^p \mid b \in H\}$ the conjugacy relations reduce to relations of the form

$$x_i a_j x_i^{-1} = a_j^{\alpha_j}$$
 whence $\alpha_j = 1$ modulo p_i

With $N = H^p$ in Lemma 2.3 the conjugacy relations which reduce to commuting relations in G/N together with the commuting relations of H and the defining relations of K are linearly independent modulo $[F, R]R^p$ where G = F/R.

However by Lemma 3.2 we may choose these relations such that they define a finite *p*-group and hence by Corollary 2.2 belongs to \mathscr{G}_p . //

The case with K cyclic appears more difficult since the different types need different proofs. However the theorem still appears to hold. For example for p odd let

$$G = \{a, b, c \mid ab = ba, a^{p^2} = b^{p^2} = c^p = 1, cac^{-1} = a^{1+p}, cbc^{-1} = b^{1+p}\}.$$

Then it can be shown for example by the methods in [2] that dim $H^2(G, Z_p) = 4$. Hence if G belongs to \mathscr{G}_p , G should have 4 defining relations and in fact it has. We have

$$G = \{a, b, c \mid c^{p} = a^{p^{2}}, cac^{-1} = a^{1+p}, cbc^{-1} = b^{1+p}, a^{-1}ba = b^{1+kp^{2}}\}$$

where k is chosen such that the greatest common divisor of $(1 + p)^p - 1$ and $(1 + kp^2)^{p^2} - 1$ is p^2 which can be done as in Lemma 3.1.

REFERENCES

1. R. C. Lyndon, The cohomology theory of group extensions, Duke Math, J. 15 (1948), 271-292.

2. C. T. C. Wall, Resolutions for extensions of groups, Proc. Cambridge Philos. Soc. 57 (1961), 251-255.

SCHOOL OF MATHEMATICAL SCIENCES

THE FLINDERS UNIVERSITY OF SOUTH AUSTRALIA